IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1255-1267.html
   My bibliography  Save this article

A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes

Author

Listed:
  • Thomas A. Murray
  • Ying Yuan
  • Peter F. Thall

Abstract

Medical therapy often consists of multiple stages, with a treatment chosen by the physician at each stage based on the patient’s history of treatments and clinical outcomes. These decisions can be formalized as a dynamic treatment regime. This article describes a new approach for optimizing dynamic treatment regimes, which bridges the gap between Bayesian inference and existing approaches, like Q-learning. The proposed approach fits a series of Bayesian regression models, one for each stage, in reverse sequential order. Each model uses as a response variable the remaining payoff assuming optimal actions are taken at subsequent stages, and as covariates the current history and relevant actions at that stage. The key difficulty is that the optimal decision rules at subsequent stages are unknown, and even if these decision rules were known the relevant response variables may be counterfactual. However, posterior distributions can be derived from the previously fitted regression models for the optimal decision rules and the counterfactual response variables under a particular set of rules. The proposed approach averages over these posterior distributions when fitting each regression model. An efficient sampling algorithm for estimation is presented, along with simulation studies that compare the proposed approach with Q-learning. Supplementary materials for this article are available online.

Suggested Citation

  • Thomas A. Murray & Ying Yuan & Peter F. Thall, 2018. "A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1255-1267, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1255-1267
    DOI: 10.1080/01621459.2017.1340887
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1340887
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1340887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1255-1267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.