Author
Listed:
- Quentin Clairon
- Nicolas J.-B. Brunel
Abstract
Ordinary differential equations (ODE) are routinely calibrated on real data for estimating unknown parameters or for reverse-engineering. Nevertheless, standard statistical techniques can give disappointing results because of the complex relationship between parameters and states, which makes the corresponding estimation problem ill-posed. Moreover, ODE are mechanistic models that are prone to modeling errors, whose influences on inference are often neglected during statistical analysis. We propose a regularized estimation framework, called Tracking, which consists in adding a perturbation (L2 function) to the original ODE. This perturbation facilitates data fitting and represents also possible model misspecifications, so that parameter estimation is done by solving a trade-off between data fidelity and model fidelity. We show that the underlying optimization problem is an optimal control problem that can be solved by the Pontryagin maximum principle for general nonlinear and partially observed ODE. The same methodology can be used for the joint estimation of finite and time-varying parameters. We show, in the case of a well-specified parametric model that our estimator is consistent and reaches the root-n rate. In addition, numerical experiments considering various sources of model misspecifications shows that Tracking still furnishes accurate estimates. Finally, we consider semiparametric estimation on both simulated data and on a real data example. Supplementary materials for this article are available online.
Suggested Citation
Quentin Clairon & Nicolas J.-B. Brunel, 2018.
"Optimal Control and Additive Perturbations Help in Estimating Ill-Posed and Uncertain Dynamical Systems,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1195-1209, July.
Handle:
RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1195-1209
DOI: 10.1080/01621459.2017.1319841
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1195-1209. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.