IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1112-1121.html
   My bibliography  Save this article

Assessing Time-Varying Causal Effect Moderation in Mobile Health

Author

Listed:
  • Audrey Boruvka
  • Daniel Almirall
  • Katie Witkiewitz
  • Susan A. Murphy

Abstract

In mobile health interventions aimed at behavior change and maintenance, treatments are provided in real time to manage current or impending high-risk situations or promote healthy behaviors in near real time. Currently there is great scientific interest in developing data analysis approaches to guide the development of mobile interventions. In particular data from mobile health studies might be used to examine effect moderators—individual characteristics, time-varying context, or past treatment response that moderate the effect of current treatment on a subsequent response. This article introduces a formal definition for moderated effects in terms of potential outcomes, a definition that is particularly suited to mobile interventions, where treatment occasions are numerous, individuals are not always available for treatment, and potential moderators might be influenced by past treatment. Methods for estimating moderated effects are developed and compared. The proposed approach is illustrated using BASICS-Mobile, a smartphone-based intervention designed to curb heavy drinking and smoking among college students. Supplementary materials for this article are available online.

Suggested Citation

  • Audrey Boruvka & Daniel Almirall & Katie Witkiewitz & Susan A. Murphy, 2018. "Assessing Time-Varying Causal Effect Moderation in Mobile Health," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1112-1121, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1112-1121
    DOI: 10.1080/01621459.2017.1305274
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1305274
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1305274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Chengchun & Wan, Runzhe & Song, Ge & Luo, Shikai & Zhu, Hongtu & Song, Rui, 2023. "A multiagent reinforcement learning framework for off-policy evaluation in two-sided markets," LSE Research Online Documents on Economics 117174, London School of Economics and Political Science, LSE Library.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    4. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    6. Donna Spruijt-Metz & Benjamin M. Marlin & Misha Pavel & Daniel E. Rivera & Eric Hekler & Steven De La Torre & Mohamed El Mistiri & Natalie M. Golaszweski & Cynthia Li & Rebecca Braga De Braganca & Kar, 2022. "Advancing Behavioral Intervention and Theory Development for Mobile Health: The HeartSteps II Protocol," IJERPH, MDPI, vol. 19(4), pages 1-22, February.
    7. Hailin Li & Fengxiao Fan & Yan Sun & Weigang Wang, 2022. "Low-Carbon Action in Full Swing: A Study on Satisfaction with Wise Medical Development," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    8. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
    9. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1112-1121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.