IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1003-1015.html
   My bibliography  Save this article

Modeling Motor Learning Using Heteroscedastic Functional Principal Components Analysis

Author

Listed:
  • Daniel Backenroth
  • Jeff Goldsmith
  • Michelle D. Harran
  • Juan C. Cortes
  • John W. Krakauer
  • Tomoko Kitago

Abstract

We propose a novel method for estimating population-level and subject-specific effects of covariates on the variability of functional data. We extend the functional principal components analysis framework by modeling the variance of principal component scores as a function of covariates and subject-specific random effects. In a setting where principal components are largely invariant across subjects and covariate values, modeling the variance of these scores provides a flexible and interpretable way to explore factors that affect the variability of functional data. Our work is motivated by a novel dataset from an experiment assessing upper extremity motor control, and quantifies the reduction in movement variability associated with skill learning. The proposed methods can be applied broadly to understand movement variability, in settings that include motor learning, impairment due to injury or disease, and recovery. Supplementary materials for this article are available online.

Suggested Citation

  • Daniel Backenroth & Jeff Goldsmith & Michelle D. Harran & Juan C. Cortes & John W. Krakauer & Tomoko Kitago, 2018. "Modeling Motor Learning Using Heteroscedastic Functional Principal Components Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1003-1015, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1003-1015
    DOI: 10.1080/01621459.2017.1379403
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1379403
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1379403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
    2. Lisa Steyer & Almond Stöcker & Sonja Greven, 2023. "Elastic analysis of irregularly or sparsely sampled curves," Biometrics, The International Biometric Society, vol. 79(3), pages 2103-2115, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1003-1015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.