IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i522p868-881.html
   My bibliography  Save this article

Using Standard Tools From Finite Population Sampling to Improve Causal Inference for Complex Experiments

Author

Listed:
  • Rahul Mukerjee
  • Tirthankar Dasgupta
  • Donald B. Rubin

Abstract

This article considers causal inference for treatment contrasts from a randomized experiment using potential outcomes in a finite population setting. Adopting a Neymanian repeated sampling approach that integrates such causal inference with finite population survey sampling, an inferential framework is developed for general mechanisms of assigning experimental units to multiple treatments. This framework extends classical methods by allowing the possibility of randomization restrictions and unequal replications. Novel conditions that are “milder” than strict additivity of treatment effects, yet permit unbiased estimation of the finite population sampling variance of any treatment contrast estimator, are derived. The consequences of departures from such conditions are also studied under the criterion of minimax bias, and a new justification for using the Neymanian conservative sampling variance estimator in experiments is provided. The proposed approach can readily be extended to the case of treatments with a general factorial structure.

Suggested Citation

  • Rahul Mukerjee & Tirthankar Dasgupta & Donald B. Rubin, 2018. "Using Standard Tools From Finite Population Sampling to Improve Causal Inference for Complex Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 868-881, April.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:868-881
    DOI: 10.1080/01621459.2017.1294076
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1294076
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1294076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    2. Zhichao Jiang & Kosuke Imai & Anup Malani, 2023. "Statistical inference and power analysis for direct and spillover effects in two‐stage randomized experiments," Biometrics, The International Biometric Society, vol. 79(3), pages 2370-2381, September.
    3. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    4. Nicole E. Pashley & Luke W. Miratrix, 2021. "Insights on Variance Estimation for Blocked and Matched Pairs Designs," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 271-296, June.
    5. Alqallaf, Fatemah A. & Huda, S. & Mukerjee, Rahul, 2019. "Causal inference from strip-plot designs in a potential outcomes framework," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 55-62.
    6. Zach Branson & Tirthankar Dasgupta, 2020. "Sampling‐based Randomised Designs for Causal Inference under the Potential Outcomes Framework," International Statistical Review, International Statistical Institute, vol. 88(1), pages 101-121, April.
    7. Jiafeng Chen, 2021. "Nonparametric Treatment Effect Identification in School Choice," Papers 2112.03872, arXiv.org, revised Oct 2023.
    8. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:868-881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.