Author
Listed:
- Danielle Braun
- Malka Gorfine
- Hormuzd A. Katki
- Argyrios Ziogas
- Giovanni Parmigiani
Abstract
Mismeasured time-to-event data used as a predictor in risk prediction models will lead to inaccurate predictions. This arises in the context of self-reported family history, a time-to-event predictor often measured with error, used in Mendelian risk prediction models. Using validation data, we propose a method to adjust for this type of error. We estimate the measurement error process using a nonparametric smoothed Kaplan–Meier estimator, and use Monte Carlo integration to implement the adjustment. We apply our method to simulated data in the context of both Mendelian and multivariate survival prediction models. Simulations are evaluated using measures of mean squared error of prediction (MSEP), area under the response operating characteristics curve (ROC-AUC), and the ratio of observed to expected number of events. These results show that our method mitigates the effects of measurement error mainly by improving calibration and total accuracy. We illustrate our method in the context of Mendelian risk prediction models focusing on misreporting of breast cancer, fitting the measurement error model on data from the University of California at Irvine, and applying our method to counselees from the Cancer Genetics Network. We show that our method improves overall calibration, especially in low risk deciles. Supplementary materials for this article are available online.
Suggested Citation
Danielle Braun & Malka Gorfine & Hormuzd A. Katki & Argyrios Ziogas & Giovanni Parmigiani, 2018.
"Nonparametric Adjustment for Measurement Error in Time-to-Event Data: Application to Risk Prediction Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 14-25, January.
Handle:
RePEc:taf:jnlasa:v:113:y:2018:i:521:p:14-25
DOI: 10.1080/01621459.2017.1311261
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:521:p:14-25. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.