Author
Listed:
- Alfredo Farjat
- Brian J. Reich
- Joseph Guinness
- Ross Whetten
- Steven McKeand
- Fikret Isik
Abstract
Provenance tests are a common tool in forestry designed to identify superior genotypes for planting at specific locations. The trials are replicated experiments established with seed from parent trees collected from different regions and grown at several locations. In this work, a Bayesian spatial approach is developed for modeling the expected relative performance of seed sources using climate variables as predictors associated with the origin of seed source and the planting site. The proposed modeling technique accounts for the spatial dependence in the data and introduces a separable Matérn covariance structure that provides a flexible means to estimate effects associated with the origin and planting site locations. The statistical model was used to develop a quantitative tool for seed deployment aimed to identify the location of superior performing seed sources that could be suitable for a specific planting site under a given climate scenario. Cross-validation results indicate that the proposed spatial models provide superior predictive ability compared to multiple linear regression methods in unobserved locations. The general trend of performance predictions based on future climate scenarios suggests an optimal assisted migration of loblolly pine seed sources from southern and warmer regions to northern and colder areas in the southern USA. Supplementary materials for this article are available online.
Suggested Citation
Alfredo Farjat & Brian J. Reich & Joseph Guinness & Ross Whetten & Steven McKeand & Fikret Isik, 2017.
"Optimal Seed Deployment Under Climate Change Using Spatial Models: Application to Loblolly Pine in the Southeastern US,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 909-920, July.
Handle:
RePEc:taf:jnlasa:v:112:y:2017:i:519:p:909-920
DOI: 10.1080/01621459.2017.1292179
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:909-920. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.