Author
Listed:
- Kazuki Uematsu
- Yoonkyung Lee
Abstract
This article investigates the theoretical relation between loss criteria and the optimal ranking functions driven by the criteria in bipartite ranking. In particular, the relation between area under the ROC curve (AUC) maximization and minimization of ranking risk under a convex loss is examined. We characterize general conditions for ranking-calibrated loss functions in a pairwise approach, and show that the best ranking functions under convex ranking-calibrated loss criteria produce the same ordering as the likelihood ratio of the positive category to the negative category over the instance space. The result illuminates the parallel between ranking and classification in general, and suggests the notion of consistency in ranking when convex ranking risk is minimized as in the RankBoost algorithm for instance. For a certain class of loss functions including the exponential loss and the binomial deviance, we specify the optimal ranking function explicitly in relation to the underlying probability distribution. In addition, we present an in-depth analysis of hinge loss optimization for ranking and point out that the RankSVM may produce potentially many ties or granularity in ranking scores due to the singularity of the hinge loss, which could result in ranking inconsistency. The theoretical findings are illustrated with numerical examples. Supplementary materials for this article are available online.
Suggested Citation
Kazuki Uematsu & Yoonkyung Lee, 2017.
"On Theoretically Optimal Ranking Functions in Bipartite Ranking,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1311-1322, July.
Handle:
RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1311-1322
DOI: 10.1080/01621459.2016.1215988
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1311-1322. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.