IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p1022-1031.html
   My bibliography  Save this article

Constructing Predictive Microbial Signatures at Multiple Taxonomic Levels

Author

Listed:
  • Tao Wang
  • Hongyu Zhao

Abstract

Recent advances in DNA sequencing technology have enabled rapid advances in our understanding of the contribution of the human microbiome to many aspects of normal human physiology and disease. A major goal of human microbiome studies is the identification of important groups of microbes that are predictive of host phenotypes. However, the large number of bacterial taxa and the compositional nature of the data make this goal difficult to achieve using traditional approaches. Furthermore, the microbiome data are structured in the sense that bacterial taxa are not independent of one another and are related evolutionarily by a phylogenetic tree. To deal with these challenges, we introduce the concept of variable fusion for high-dimensional compositional data and propose a novel tree-guided variable fusion method. Our method is based on the linear regression model with tree-guided penalty functions. It incorporates the tree information node-by-node and is capable of building predictive models comprised of bacterial taxa at different taxonomic levels. A gut microbiome data analysis and simulations are presented to illustrate the good performance of the proposed method. Supplementary materials for this article are available online.

Suggested Citation

  • Tao Wang & Hongyu Zhao, 2017. "Constructing Predictive Microbial Signatures at Multiple Taxonomic Levels," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1022-1031, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1022-1031
    DOI: 10.1080/01621459.2016.1270213
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1270213
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1270213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Dong & Longhai Li & Man Chen & Anthony Kusalik & Wei Xu, 2020. "Predictive analysis methods for human microbiome data with application to Parkinson’s disease," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
    2. Haixiang Zhang & Jun Chen & Zhigang Li & Lei Liu, 2021. "Testing for Mediation Effect with Application to Human Microbiome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 313-328, July.
    3. Konstantin Shestopaloff & Mei Dong & Fan Gao & Wei Xu, 2021. "Dcmd: Distance-based classification using mixture distributions on microbiome data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-18, March.
    4. Bingkai Wang & Brian S. Caffo & Xi Luo & Chin‐Fu Liu & Andreia V. Faria & Michael I. Miller & Yi Zhao & for the Alzheimer's Disease Neuroimaging Initiative*, 2022. "Regularized regression on compositional trees with application to MRI analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 541-561, June.
    5. Yi Zhao & Bingkai Wang & Chin‐Fu Liu & Andreia V. Faria & Michael I. Miller & Brian S. Caffo & Xi Luo, 2023. "Identifying brain hierarchical structures associated with Alzheimer's disease using a regularized regression method with tree predictors," Biometrics, The International Biometric Society, vol. 79(3), pages 2333-2345, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1022-1031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.