IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i518p471-483.html
   My bibliography  Save this article

Bayesian Hierarchical Multi-Population Multistate Jolly–Seber Models With Covariates: Application to the Pallid Sturgeon Population Assessment Program

Author

Listed:
  • Guohui Wu
  • Scott H. Holan

Abstract

Estimating abundance for multiple populations is of fundamental importance to many ecological monitoring programs. Equally important is quantifying the spatial distribution and characterizing the migratory behavior of target populations within the study domain. To achieve these goals, we propose a Bayesian hierarchical multi-population multistate Jolly–Seber model that incorporates covariates. The model is proposed using a state-space framework and has several distinct advantages. First, multiple populations within the same study area can be modeled simultaneously. As a consequence, it is possible to achieve improved parameter estimation by “borrowing strength” across different populations. In many cases, such as our motivating example involving endangered species, this borrowing of strength is crucial, as there is relatively less information for one of the populations under consideration. Second, in addition to accommodating covariate information, we develop a computationally efficient Markov chain Monte Carlo algorithm that requires no tuning. Importantly, the model we propose allows us to draw inference on each population as well as on multiple populations simultaneously. Finally, we demonstrate the effectiveness of our method through a motivating example of estimating the spatial distribution and migration of hatchery and wild populations of the endangered pallid sturgeon (Scaphirhynchus albus), using data from the Pallid Sturgeon Population Assessment Program on the Lower Missouri River. Supplementary materials for this article are available online.

Suggested Citation

  • Guohui Wu & Scott H. Holan, 2017. "Bayesian Hierarchical Multi-Population Multistate Jolly–Seber Models With Covariates: Application to the Pallid Sturgeon Population Assessment Program," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 471-483, April.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:471-483
    DOI: 10.1080/01621459.2016.1211531
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1211531
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1211531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.
    2. Jerome A. Dupuis & Carl James Schwarz, 2007. "A Bayesian Approach to the Multistate Jolly–Seber Capture–Recapture Model," Biometrics, The International Biometric Society, vol. 63(4), pages 1015-1022, December.
    3. Laura Cowen & Carl J. Schwarz, 2006. "The Jolly–Seber Model with Tag Loss," Biometrics, The International Biometric Society, vol. 62(3), pages 699-705, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasanisi, Alberto & Fu, Shuai & Bousquet, Nicolas, 2012. "Estimating discrete Markov models from various incomplete data schemes," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2609-2625.
    2. Laura L. E. Cowen & Panagiotis Besbeas & Byron J. T. Morgan & Carl J. Schwarz, 2017. "Hidden Markov models for extended batch data," Biometrics, The International Biometric Society, vol. 73(4), pages 1321-1331, December.
    3. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:471-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.