IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i517p436-445.html
   My bibliography  Save this article

Robust Maximum Association Estimators

Author

Listed:
  • Andreas Alfons
  • Christophe Croux
  • Peter Filzmoser

Abstract

The maximum association between two multivariate variables X$\boldsymbol{X}$ and Y$\boldsymbol{Y}$ is defined as the maximal value that a bivariate association measure between one-dimensional projections αtX${\boldsymbol{\alpha }}^{t} \boldsymbol{X}$ and βtY${\boldsymbol{\beta }}^{t} \boldsymbol{Y}$ can attain. Taking the Pearson correlation as projection index results in the first canonical correlation coefficient. We propose to use more robust association measures, such as Spearman’s or Kendall’s rank correlation, or association measures derived from bivariate scatter matrices. We study the robustness of the proposed maximum association measures and the corresponding estimators of the coefficients yielding the maximum association. In the important special case of Y$\boldsymbol{Y}$ being univariate, maximum rank correlation estimators yield regression estimators that are invariant against monotonic transformations of the response. We obtain asymptotic variances for this special case. It turns out that maximum rank correlation estimators combine good efficiency and robustness properties. Simulations and a real data example illustrate the robustness and the power for handling nonlinear relationships of these estimators. Supplementary materials for this article are available online.

Suggested Citation

  • Andreas Alfons & Christophe Croux & Peter Filzmoser, 2017. "Robust Maximum Association Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 436-445, January.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:436-445
    DOI: 10.1080/01621459.2016.1148609
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1148609
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1148609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    2. Nathan Uyttendaele, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," Computational Statistics, Springer, vol. 33(2), pages 1047-1070, June.
    3. Langworthy, Benjamin W. & Stephens, Rebecca L. & Gilmore, John H. & Fine, Jason P., 2021. "Canonical correlation analysis for elliptical copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    4. Jorge G. Adrover & Stella M. Donato, 2023. "Aspects of robust canonical correlation analysis, principal components and association," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 623-650, June.
    5. Alfio Marazzi & Marina Valdora & Victor Yohai & Michael Amiguet, 2019. "A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 223-241, March.
    6. Liebscher, Eckhard, 2021. "Kendall regression coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    7. Stephen P. Groff, 2022. "A contemporary social contract: An exploration of enabling factors influencing climate policy intractability in developed nations," Global Policy, London School of Economics and Political Science, vol. 13(5), pages 721-735, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:436-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.