IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i517p215-234.html
   My bibliography  Save this article

Dynamic Multiscale Spatiotemporal Models for Poisson Data

Author

Listed:
  • Thaís C. O. Fonseca
  • Marco A. R. Ferreira

Abstract

We propose a new class of dynamic multiscale models for Poisson spatiotemporal processes. Specifically, we use a multiscale spatial Poisson factorization to decompose the Poisson process at each time point into spatiotemporal multiscale coefficients. We then connect these spatiotemporal multiscale coefficients through time with a novel Dirichlet evolution. Further, we propose a simulation-based full Bayesian posterior analysis. In particular, we develop filtering equations for updating of information forward in time and smoothing equations for integration of information backward in time, and use these equations to develop a forward filter backward sampler for the spatiotemporal multiscale coefficients. Because the multiscale coefficients are conditionally independent a posteriori, our full Bayesian posterior analysis is scalable, computationally efficient, and highly parallelizable. Moreover, the Dirichlet evolution of each spatiotemporal multiscale coefficient is parametrized by a discount factor that encodes the relevance of the temporal evolution of the spatiotemporal multiscale coefficient. Therefore, the analysis of discount factors provides a powerful way to identify regions with distinctive spatiotemporal dynamics. Finally, we illustrate the usefulness of our multiscale spatiotemporal Poisson methodology with two applications. The first application examines mortality ratios in the state of Missouri, and the second application considers tornado reports in the American Midwest.

Suggested Citation

  • Thaís C. O. Fonseca & Marco A. R. Ferreira, 2017. "Dynamic Multiscale Spatiotemporal Models for Poisson Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 215-234, January.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:215-234
    DOI: 10.1080/01621459.2015.1129968
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1129968
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1129968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:517:p:215-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.