IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i515p1004-1019.html
   My bibliography  Save this article

Estimation of Directed Acyclic Graphs Through Two-Stage Adaptive Lasso for Gene Network Inference

Author

Listed:
  • Sung Won Han
  • Gong Chen
  • Myun-Seok Cheon
  • Hua Zhong

Abstract

Graphical models are a popular approach to find dependence and conditional independence relationships between gene expressions. Directed acyclic graphs (DAGs) are a special class of directed graphical models, where all the edges are directed edges and contain no directed cycles. The DAGs are well known models for discovering causal relationships between genes in gene regulatory networks. However, estimating DAGs without assuming known ordering is challenging due to high dimensionality, the acyclic constraints, and the presence of equivalence class from observational data. To overcome these challenges, we propose a two-stage adaptive Lasso approach, called NS-DIST, which performs neighborhood selection (NS) in stage 1, and then estimates DAGs by the discrete improving search with Tabu (DIST) algorithm within the selected neighborhood. Simulation studies are presented to demonstrate the effectiveness of the method and its computational efficiency. Two real data examples are used to demonstrate the practical usage of our method for gene regulatory network inference. Supplementary materials for this article are available online.

Suggested Citation

  • Sung Won Han & Gong Chen & Myun-Seok Cheon & Hua Zhong, 2016. "Estimation of Directed Acyclic Graphs Through Two-Stage Adaptive Lasso for Gene Network Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1004-1019, July.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1004-1019
    DOI: 10.1080/01621459.2016.1142880
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1142880
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1142880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Guo & Hai Zhang, 2020. "Sparse directed acyclic graphs incorporating the covariates," Statistical Papers, Springer, vol. 61(5), pages 2119-2148, October.
    2. Jianyu Liu & Wei Sun & Yufeng Liu, 2019. "Joint skeleton estimation of multiple directed acyclic graphs for heterogeneous population," Biometrics, The International Biometric Society, vol. 75(1), pages 36-47, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1004-1019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.