IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p656-669.html
   My bibliography  Save this article

Bayesian Conditional Tensor Factorizations for High-Dimensional Classification

Author

Listed:
  • Yun Yang
  • David B. Dunson

Abstract

In many application areas, data are collected on a categorical response and high-dimensional categorical predictors, with the goals being to build a parsimonious model for classification while doing inferences on the important predictors. In settings such as genomics, there can be complex interactions among the predictors. By using a carefully structured Tucker factorization, we define a model that can characterize any conditional probability, while facilitating variable selection and modeling of higher-order interactions. Following a Bayesian approach, we propose a Markov chain Monte Carlo algorithm for posterior computation accommodating uncertainty in the predictors to be included. Under near low-rank assumptions, the posterior distribution for the conditional probability is shown to achieve close to the parametric rate of contraction even in ultra high-dimensional settings. The methods are illustrated using simulation examples and biomedical applications. Supplementary materials for this article are available online.

Suggested Citation

  • Yun Yang & David B. Dunson, 2016. "Bayesian Conditional Tensor Factorizations for High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 656-669, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:656-669
    DOI: 10.1080/01621459.2015.1029129
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1029129
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1029129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Kontoyiannis & Lambros Mertzanis & Athina Panotopoulou & Ioannis Papageorgiou & Maria Skoularidou, 2022. "Bayesian context trees: Modelling and exact inference for discrete time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1287-1323, September.
    2. Russo, Massimiliano & Durante, Daniele & Scarpa, Bruno, 2018. "Bayesian inference on group differences in multivariate categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 136-149.
    3. Shi, Chengchun & Lu, Wenbin & Song, Rui, 2019. "Determining the number of latent factors in statistical multi-relational learning," LSE Research Online Documents on Economics 102110, London School of Economics and Political Science, LSE Library.
    4. Ying Liao & Yisha Xiang & Min Wang, 2021. "Health assessment and prognostics based on higher‐order hidden semi‐Markov models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(2), pages 259-276, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:656-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.