Author
Listed:
- Matthew R. Schofield
- Richard J. Barker
- Andrew Gelman
- Edward R. Cook
- Keith R. Briffa
Abstract
Quantifying long-term historical climate is fundamental to understanding recent climate change. Most instrumentally recorded climate data are only available for the past 200 years, so proxy observations from natural archives are often considered. We describe a model-based approach to reconstructing climate defined in terms of raw tree-ring measurement data that simultaneously accounts for nonclimatic and climatic variability. In this approach, we specify a joint model for the tree-ring data and climate variable that we fit using Bayesian inference. We consider a range of prior densities and compare the modeling approach to current methodology using an example case of Scots pine from Torneträsk, Sweden, to reconstruct growing season temperature. We describe how current approaches translate into particular model assumptions. We explore how changes to various components in the model-based approach affect the resulting reconstruction. We show that minor changes in model specification can have little effect on model fit but lead to large changes in the predictions. In particular, the periods of relatively warmer and cooler temperatures are robust between models, but the magnitude of the resulting temperatures is highly model dependent. Such sensitivity may not be apparent with traditional approaches because the underlying statistical model is often hidden or poorly described. Supplementary materials for this article are available online.
Suggested Citation
Matthew R. Schofield & Richard J. Barker & Andrew Gelman & Edward R. Cook & Keith R. Briffa, 2016.
"A Model-Based Approach to Climate Reconstruction Using Tree-Ring Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 93-106, March.
Handle:
RePEc:taf:jnlasa:v:111:y:2016:i:513:p:93-106
DOI: 10.1080/01621459.2015.1110524
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:513:p:93-106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.