IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i511p1037-1046.html
   My bibliography  Save this article

Testing for Nodal Dependence in Relational Data Matrices

Author

Listed:
  • Alexander Volfovsky
  • Peter D. Hoff

Abstract

Relational data are often represented as a square matrix, the entries of which record the relationships between pairs of objects. Many statistical methods for the analysis of such data assume some degree of similarity or dependence between objects in terms of the way they relate to each other. However, formal tests for such dependence have not been developed. We provide a test for such dependence using the framework of the matrix normal model, a type of multivariate normal distribution parameterized in terms of row- and column-specific covariance matrices. We develop a likelihood ratio test (LRT) for row and column dependence based on the observation of a single relational data matrix. We obtain a reference distribution for the LRT statistic, thereby providing an exact test for the presence of row or column correlations in a square relational data matrix. Additionally, we provide extensions of the test to accommodate common features of such data, such as undefined diagonal entries, a nonzero mean, multiple observations, and deviations from normality. Supplementary materials for this article are available online.

Suggested Citation

  • Alexander Volfovsky & Peter D. Hoff, 2015. "Testing for Nodal Dependence in Relational Data Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1037-1046, September.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1037-1046
    DOI: 10.1080/01621459.2014.965777
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.965777
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.965777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    2. Hoff, Peter D., 2016. "Limitations on detecting row covariance in the presence of column covariance," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 249-258.
    3. Volfovsky, Alexander & Airoldi, Edoardo M., 2016. "Sharp total variation bounds for finitely exchangeable arrays," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 54-59.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:511:p:1037-1046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.