IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p810-823.html
   My bibliography  Save this article

Clustering from Categorical Data Sequences

Author

Listed:
  • Harry Crane

Abstract

The three-parameter cluster model is a combinatorial stochastic process that generates categorical response sequences by randomly perturbing a fixed clustering parameter. This clear relationship between the observed data and the underlying clustering is particularly attractive in cluster analysis, in which supervised learning is a common goal and missing data is a familiar issue. The model is well equipped for this task, as it can handle missing data, perform out-of-sample inference, and accommodate both independent and dependent data sequences. Moreover, its clustering parameter lies in the unrestricted space of partitions, so that the number of clusters need not be specified beforehand. We establish these and other theoretical properties and also demonstrate the model on datasets from epidemiology, genetics, political science, and legal studies.

Suggested Citation

  • Harry Crane, 2015. "Clustering from Categorical Data Sequences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 810-823, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:810-823
    DOI: 10.1080/01621459.2014.983521
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.983521
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.983521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Golinko & Xingquan Zhu, 2019. "Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks," Information Systems Frontiers, Springer, vol. 21(1), pages 125-142, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:810-823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.