IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p711-722.html
   My bibliography  Save this article

Bayesian Dose-Finding in Two Treatment Cycles Based on the Joint Utility of Efficacy and Toxicity

Author

Listed:
  • Juhee Lee
  • Peter F. Thall
  • Yuan Ji
  • Peter Müller

Abstract

This article proposes a phase I/II clinical trial design for adaptively and dynamically optimizing each patient's dose in each of two cycles of therapy based on the joint binary efficacy and toxicity outcomes in each cycle. A dose-outcome model is assumed that includes a Bayesian hierarchical latent variable structure to induce association among the outcomes and also facilitate posterior computation. Doses are chosen in each cycle based on posteriors of a model-based objective function, similar to a reinforcement learning or Q-learning function, defined in terms of numerical utilities of the joint outcomes in each cycle. For each patient, the procedure outputs a sequence of two actions, one for each cycle, with each action being the decision to either treat the patient at a chosen dose or not to treat. The cycle 2 action depends on the individual patient's cycle 1 dose and outcomes. In addition, decisions are based on posterior inference using other patients' data, and therefore, the proposed method is adaptive both within and between patients. A simulation study of the method is presented, including comparison to two-cycle extensions of the conventional 3 + 3 algorithm, continual reassessment method, and a Bayesian model-based design, and evaluation of robustness. Supplementary materials for this article are available online.

Suggested Citation

  • Juhee Lee & Peter F. Thall & Yuan Ji & Peter Müller, 2015. "Bayesian Dose-Finding in Two Treatment Cycles Based on the Joint Utility of Efficacy and Toxicity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 711-722, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:711-722
    DOI: 10.1080/01621459.2014.926815
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.926815
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.926815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    2. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    3. Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:711-722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.