IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p515-527.html
   My bibliography  Save this article

Large, Sparse Optimal Matching With Refined Covariate Balance in an Observational Study of the Health Outcomes Produced by New Surgeons

Author

Listed:
  • Samuel D. Pimentel
  • Rachel R. Kelz
  • Jeffrey H. Silber
  • Paul R. Rosenbaum

Abstract

Every newly trained surgeon performs her first unsupervised operation. How do the health outcomes of her patients compare with the patients of experienced surgeons? Using data from 498 hospitals, we compare 1252 pairs comprised of a new surgeon and an experienced surgeon working at the same hospital. We introduce a new form of matching that matches patients of each new surgeon to patients of an otherwise similar experienced surgeon at the same hospital, perfectly balancing 176 surgical procedures and closely balancing a total of 2.9 million categories of patients; additionally, the individual patient pairs are as close as possible. A new goal for matching is introduced, called "refined covariate balance," in which a sequence of nested, ever more refined, nominal covariates is balanced as closely as possible, emphasizing the first or coarsest covariate in that sequence. A new algorithm for matching is proposed and the main new results prove that the algorithm finds the closest match in terms of the total within-pair covariate distances among all matches that achieve refined covariate balance. Unlike previous approaches to forcing balance on covariates, the new algorithm creates multiple paths to a match in a network, where paths that introduce imbalances are penalized and hence avoided to the extent possible. The algorithm exploits a sparse network to quickly optimize a match that is about two orders of magnitude larger than is typical in statistical matching problems, thereby permitting much more extensive use of fine and near-fine balance constraints. The match was constructed in a few minutes using a network optimization algorithm implemented in R. An R package called rcbalance implementing the method is available from CRAN.

Suggested Citation

  • Samuel D. Pimentel & Rachel R. Kelz & Jeffrey H. Silber & Paul R. Rosenbaum, 2015. "Large, Sparse Optimal Matching With Refined Covariate Balance in an Observational Study of the Health Outcomes Produced by New Surgeons," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 515-527, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:515-527
    DOI: 10.1080/01621459.2014.997879
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.997879
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.997879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoqi Yu, 2021. "Evaluating and improving a matched comparison of antidepressants and bone density," Biometrics, The International Biometric Society, vol. 77(4), pages 1276-1288, December.
    2. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    3. Samuel D. Pimentel & Lauren Vollmer Forrow & Jonathan Gellar & Jiaqi Li, 2020. "Optimal matching approaches in health policy evaluations under rolling enrolment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1411-1435, October.
    4. María de los Angeles Resa & José R. Zubizarreta, 2020. "Direct and stable weight adjustment in non‐experimental studies with multivalued treatments: analysis of the effect of an earthquake on post‐traumatic stress," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1387-1410, October.
    5. Møller Dahl, Christian & Planck Kongstad, Line, 2017. "The costs of acute readmissions to a different hospital – Does the effect vary across provider types?," Social Science & Medicine, Elsevier, vol. 183(C), pages 116-125.
    6. Bo Zhang & Dylan S. Small, 2020. "A calibrated sensitivity analysis for matched observational studies with application to the effect of second‐hand smoke exposure on blood lead levels in children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1285-1305, November.
    7. Siyu Heng & Hyunseung Kang & Dylan S. Small & Colin B. Fogarty, 2021. "Increasing power for observational studies of aberrant response: An adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 482-504, July.
    8. Bikram Karmakar, 2022. "An approximation algorithm for blocking of an experimental design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1726-1750, November.
    9. Samuel D. Pimentel & Dylan S. Small & Paul R. Rosenbaum, 2016. "Constructed Second Control Groups and Attenuation of Unmeasured Biases," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1157-1167, July.
    10. Luke Keele & Steve Harris & Samuel D. Pimentel & Richard Grieve, 2020. "Stronger instruments and refined covariate balance in an observational study of the effectiveness of prompt admission to intensive care units," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1501-1521, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:515-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.