Tuning Parameter Selection for the Adaptive Lasso Using ERIC
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2014.951444
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francis K. C. Hui & Samuel Müller & A. H. Welsh, 2017. "Joint Selection in Mixed Models using Regularized PQL," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1323-1333, July.
- Jonas Krampe & Efstathios Paparoditis, 2021. "Sparsity concepts and estimation procedures for high‐dimensional vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 554-579, September.
- Mineaki Ohishi & Hirokazu Yanagihara & Shuichi Kawano, 2020. "Equivalence between adaptive Lasso and generalized ridge estimators in linear regression with orthogonal explanatory variables after optimizing regularization parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1501-1516, December.
- Hui, Francis K.C. & Müller, Samuel & Welsh, A.H., 2020. "The LASSO on latent indices for regression modeling with ordinal categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Linh H. Nghiem & Francis K.C. Hui & Samuel Müller & A.H. Welsh, 2023. "Screening methods for linear errors‐in‐variables models in high dimensions," Biometrics, The International Biometric Society, vol. 79(2), pages 926-939, June.
- Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
- Holter, Julia C. & Stallrich, Jonathan W., 2023. "Tuning parameter selection for penalized estimation via R2," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Jiacheng Wu & Nina Galanter & Susan M. Shortreed & Erica E.M. Moodie, 2022. "Ranking tailoring variables for constructing individualized treatment rules: An application to schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 309-330, March.
- Karl B. Gregory & Dewei Wang & Christopher S. McMahan, 2019. "Adaptive elastic net for group testing," Biometrics, The International Biometric Society, vol. 75(1), pages 13-23, March.
- David Cheng & Abhishek Chakrabortty & Ashwin N. Ananthakrishnan & Tianxi Cai, 2020. "Estimating average treatment effects with a double‐index propensity score," Biometrics, The International Biometric Society, vol. 76(3), pages 767-777, September.
- Daniel Borup & David E. Rapach & Erik Christian Montes Schütte, 2021. "Now- and Backcasting Initial Claims with High-Dimensional Daily Internet Search-Volume Data," CREATES Research Papers 2021-02, Department of Economics and Business Economics, Aarhus University.
- Piotr Pokarowski & Wojciech Rejchel & Agnieszka Sołtys & Michał Frej & Jan Mielniczuk, 2022. "Improving Lasso for model selection and prediction," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 831-863, June.
- Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
- Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:262-269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.