IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i507p1023-1039.html
   My bibliography  Save this article

Bayesian Aggregation of Order-Based Rank Data

Author

Listed:
  • Ke Deng
  • Simeng Han
  • Kate J. Li
  • Jun S. Liu

Abstract

Rank aggregation, that is, combining several ranking functions (called base rankers) to get aggregated, usually stronger rankings of a given set of items, is encountered in many disciplines. Most methods in the literature assume that base rankers of interest are equally reliable. It is very common in practice, however, that some rankers are more informative and reliable than others. It is desirable to distinguish high quality base rankers from low quality ones and treat them differently. Some methods achieve this by assigning prespecified weights to base rankers. But there are no systematic and principled strategies for designing a proper weighting scheme for a practical problem. In this article, we propose a Bayesian approach, called Bayesian aggregation of rank data (BARD), to overcome this limitation. By attaching a quality parameter to each base ranker and estimating these parameters along with the aggregation process, BARD measures reliabilities of base rankers in a quantitative way and makes use of this information to improve the aggregated ranking. In addition, we design a method to detect highly correlated rankers and to account for their information redundancy appropriately. Both simulation studies and real data applications show that BARD significantly outperforms existing methods when equality of base rankers varies greatly.

Suggested Citation

  • Ke Deng & Simeng Han & Kate J. Li & Jun S. Liu, 2014. "Bayesian Aggregation of Order-Based Rank Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1023-1039, September.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1023-1039
    DOI: 10.1080/01621459.2013.878660
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.878660
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.878660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mackenbach, Johan P. & McKee, Martin, 2015. "Government, politics and health policy: A quantitative analysis of 30 European countries," Health Policy, Elsevier, vol. 119(10), pages 1298-1308.
    2. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1023-1039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.