IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i506p717-729.html
   My bibliography  Save this article

Parametrically Assisted Nonparametric Estimation of a Density in the Deconvolution Problem

Author

Listed:
  • Aurore Delaigle
  • Peter Hall

Abstract

Nonparametric estimation of a density from contaminated data is a difficult problem, for which convergence rates are notoriously slow. We introduce parametrically assisted nonparametric estimators which can dramatically improve on the performance of standard nonparametric estimators when the assumed model is close to the true density, without degrading much the quality of purely nonparametric estimators in other cases. We establish optimal convergence rates for our problem and discuss estimators that attain these rates. The very good numerical properties of the methods are illustrated via a simulation study. Supplementary materials for this article are available online.

Suggested Citation

  • Aurore Delaigle & Peter Hall, 2014. "Parametrically Assisted Nonparametric Estimation of a Density in the Deconvolution Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 717-729, June.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:717-729
    DOI: 10.1080/01621459.2013.857611
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.857611
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.857611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornelis J. Potgieter, 2020. "Density deconvolution for generalized skew-symmetric distributions," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-20, December.
    2. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:717-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.