IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i506p635-646.html
   My bibliography  Save this article

Local Empirical Likelihood Inference for Varying-Coefficient Density-Ratio Models Based on Case-Control Data

Author

Listed:
  • Xu Liu
  • Hongmei Jiang
  • Yong Zhou

Abstract

In this article, we develop a varying-coefficient density-ratio model for case-control studies. The case and control samples come from two different distributions. Under the model assumption, the ratio of the two densities is related to the linear combination of covariates with varying coefficients through a known function. A special case is the exponential tilt model where the log ratio of the two densities is a linear function of covariates. We propose a local empirical likelihood (EL) approach to estimate the nonparametric coefficient functions. Under some regularity assumptions, the proposed estimators are shown to be consistent and asymptotically normally distributed. The sieve empirical likelihood ratio (SELR) test statistic for detecting whether the varying-coefficients are really constant and other related hypotheses is constructed and it follows approximately a chi-squared distribution. We introduce a modified bootstrap procedure to estimate the null distribution of the SELR when sample size is small. We also examine the performance of proposed method for finite sample sizes through simulation studies and illustrate it with a real dataset. Supplementary materials for this article are available online.

Suggested Citation

  • Xu Liu & Hongmei Jiang & Yong Zhou, 2014. "Local Empirical Likelihood Inference for Varying-Coefficient Density-Ratio Models Based on Case-Control Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 635-646, June.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:635-646
    DOI: 10.1080/01621459.2013.858629
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.858629
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.858629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu Xu & Gao Bin & Cui Yuehua, 2017. "Generalized partial linear varying multi-index coefficient model for gene-environment interactions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(1), pages 59-74, March.
    2. Geng, Pei & Sakhanenko, Lyudmila, 2016. "Parameter estimation for the logistic regression model under case-control study," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 168-177.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:635-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.