IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i505p315-333.html
   My bibliography  Save this article

Expectation Propagation for Likelihood-Free Inference

Author

Listed:
  • Simon Barthelmé
  • Nicolas Chopin

Abstract

Many models of interest in the natural and social sciences have no closed-form likelihood function, which means that they cannot be treated using the usual techniques of statistical inference. In the case where such models can be efficiently simulated, Bayesian inference is still possible thanks to the approximate Bayesian computation (ABC) algorithm. Although many refinements have been suggested, ABC inference is still far from routine. ABC is often excruciatingly slow due to very low acceptance rates. In addition, ABC requires introducing a vector of "summary statistics" s ( y ), the choice of which is relatively arbitrary, and often require some trial and error, making the whole process laborious for the user. We introduce in this work the EP-ABC algorithm, which is an adaptation to the likelihood-free context of the variational approximation algorithm known as expectation propagation . The main advantage of EP-ABC is that it is faster by a few orders of magnitude than standard algorithms, while producing an overall approximation error that is typically negligible. A second advantage of EP-ABC is that it replaces the usual global ABC constraint ‖ s ( y ) - s ( y -super-⋆)‖ ⩽ ϵ, where s ( y -super-⋆) is the vector of summary statistics computed on the whole dataset, by n local constraints of the form ‖ s i ( y i ) - s i ( y -super-⋆ i )‖ ⩽ ϵ that apply separately to each data point. In particular, it is often possible to take s i ( y i ) = y i , making it possible to do away with summary statistics entirely. In that case, EP-ABC makes it possible to approximate directly the evidence (marginal likelihood) of the model. Comparisons are performed in three real-world applications that are typical of likelihood-free inference, including one application in neuroscience that is novel, and possibly too challenging for standard ABC techniques.

Suggested Citation

  • Simon Barthelmé & Nicolas Chopin, 2014. "Expectation Propagation for Likelihood-Free Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 315-333, March.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:315-333
    DOI: 10.1080/01621459.2013.864178
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.864178
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.864178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigues, G.S. & Prangle, D. & Sisson, S.A., 2018. "Recalibration: A post-processing method for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 53-66.
    2. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2024.
    3. Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    4. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    5. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    6. Raanju R. Sundararajan & Wagner Barreto‐Souza, 2023. "Student‐t stochastic volatility model with composite likelihood EM‐algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 125-147, January.
    7. Alexander Buchholz & Nicolas CHOPIN, 2017. "Improving approximate Bayesian computation via quasi Monte Carlo," Working Papers 2017-37, Center for Research in Economics and Statistics.
    8. Dehideniya, Mahasen B. & Drovandi, Christopher C. & McGree, James M., 2018. "Optimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 277-297.
    9. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:315-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.