Author
Listed:
- Sungduk Kim
- Zhen Chen
- Zhiwei Zhang
- Bruce G. Simons-Morton
- Paul S. Albert
Abstract
Although there is evidence that teenagers are at a high risk of crashes in the early months after licensure, the driving behavior of these teenagers is not well understood. The Naturalistic Teenage Driving Study (NTDS) is the first U.S. study to document continuous driving performance of newly licensed teenagers during their first 18 months of licensure. Counts of kinematic events such as the number of rapid accelerations are available for each trip, and their incidence rates represent different aspects of driving behavior. We propose a hierarchical Poisson regression model incorporating overdispersion, heterogeneity, and serial correlation as well as a semiparametric mean structure. Analysis of the NTDS data is carried out with a hierarchical Bayesian framework using reversible jump Markov chain Monte Carlo algorithms to accommodate the flexible mean structure. We show that driving with a passenger and night driving decrease kinematic events, while having risky friends increases these events. Further the within-subject variation in these events is comparable to the between-subject variation. This methodology will be useful for other intensively collected longitudinal count data, where event rates are low and interest focuses on estimating the mean and variance structure of the process. Supplementary materials for this article are available online.
Suggested Citation
Sungduk Kim & Zhen Chen & Zhiwei Zhang & Bruce G. Simons-Morton & Paul S. Albert, 2013.
"Bayesian Hierarchical Poisson Regression Models: An Application to a Driving Study With Kinematic Events,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 494-503, June.
Handle:
RePEc:taf:jnlasa:v:108:y:2013:i:502:p:494-503
DOI: 10.1080/01621459.2013.770702
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:502:p:494-503. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.