IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i502p483-493.html
   My bibliography  Save this article

A Hierarchical Bayesian Approach for Aerosol Retrieval Using MISR Data

Author

Listed:
  • Yueqing Wang
  • Xin Jiang
  • Bin Yu
  • Ming Jiang

Abstract

Atmospheric aerosols can cause serious damage to human health and reduce life expectancy. Using the radiances observed by NASA's Multi-angle Imaging SpectroRadiometer (MISR), the current MISR operational algorithm retrieves aerosol optical depth (AOD) at 17.6 km resolution. A systematic study of aerosols and their impact on public health, especially in highly populated urban areas, requires finer-resolution estimates of AOD's spatial distribution. We embed MISR's operational weighted least squares criterion and its forward calculations for AOD retrievals in a likelihood framework and further expand into a hierarchical Bayesian model to adapt to finer spatial resolution of 4.4 km. To take advantage of AOD's spatial smoothness, our method borrows strength from data at neighboring areas by postulating a Gaussian Markov random field prior for AOD. Our model considers AOD and aerosol mixing vectors as continuous variables, whose inference is carried out using Metropolis-within-Gibbs sampling methods. Retrieval uncertainties are quantified by posterior variabilities. We also develop a parallel Markov chain Monte Carlo (MCMC) algorithm to improve computational efficiency. We assess our retrieval performance using ground-based measurements from the AErosol RObotic NETwork (AERONET) and satellite images from Google Earth. Based on case studies in the greater Beijing area, China, we show that 4.4 km resolution can improve both the accuracy and coverage of remotely sensed aerosol retrievals, as well as our understanding of the spatial and seasonal behaviors of aerosols. This is particularly important during high-AOD events, which often indicate severe air pollution.

Suggested Citation

  • Yueqing Wang & Xin Jiang & Bin Yu & Ming Jiang, 2013. "A Hierarchical Bayesian Approach for Aerosol Retrieval Using MISR Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 483-493, June.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:502:p:483-493
    DOI: 10.1080/01621459.2013.796834
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.796834
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.796834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junbo Zhang & Daoji Li & Yingzhi Xia & Qifeng Liao, 2022. "Bayesian Aerosol Retrieval-Based PM 2.5 Estimation through Hierarchical Gaussian Process Models," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
    2. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:502:p:483-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.