IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i498p737-753.html
   My bibliography  Save this article

DD -Classifier: Nonparametric Classification Procedure Based on DD -Plot

Author

Listed:
  • Jun Li
  • Juan A. Cuesta-Albertos
  • Regina Y. Liu

Abstract

Using the DD -plot (depth vs. depth plot), we introduce a new nonparametric classification algorithm and call it DD -classifier. The algorithm is completely nonparametric, and it requires no prior knowledge of the underlying distributions or the form of the separating curve. Thus, it can be applied to a wide range of classification problems. The algorithm is completely data driven and its classification outcome can be easily visualized in a two-dimensional plot regardless of the dimension of the data. Moreover, it has the advantage of bypassing the estimation of underlying parameters such as means and scales, which is often required by the existing classification procedures. We study the asymptotic properties of the DD -classifier and its misclassification rate. Specifically, we show that DD -classifier is asymptotically equivalent to the Bayes rule under suitable conditions, and it can achieve Bayes error for a family broader than elliptical distributions. The performance of the classifier is also examined using simulated and real datasets. Overall, the DD -classifier performs well across a broad range of settings, and compares favorably with existing classifiers. It can also be robust against outliers or contamination.

Suggested Citation

  • Jun Li & Juan A. Cuesta-Albertos & Regina Y. Liu, 2012. "DD -Classifier: Nonparametric Classification Procedure Based on DD -Plot," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 737-753, June.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:737-753
    DOI: 10.1080/01621459.2012.688462
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.688462
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.688462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:737-753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.