IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p349-361.html
   My bibliography  Save this article

On Fractile Transformation of Covariates in Regression

Author

Listed:
  • Bodhisattva Sen
  • Probal Chaudhuri

Abstract

The need for comparing two regression functions arises frequently in statistical applications. Comparison of the usual regression functions is not very meaningful in situations where the distributions and the ranges of the covariates are different for the populations. For instance, in econometric studies, the prices of commodities and people's incomes observed at different time points may not be on comparable scales due to inflation and other economic factors. In this article, we describe a method of standardizing the covariates and estimating the transformed regression function, which then become comparable. We develop smooth estimates of the fractile regression function and study its statistical properties analytically as well as numerically. We also provide a few real examples that illustrate the difficulty in comparing the usual regression functions and motivate the need for the fractile transformation. Our analysis of the real examples leads to new and useful statistical conclusions that are missed by comparison of the usual regression functions.

Suggested Citation

  • Bodhisattva Sen & Probal Chaudhuri, 2012. "On Fractile Transformation of Covariates in Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 349-361, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:349-361
    DOI: 10.1080/01621459.2011.646916
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.646916
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2011.646916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patra, Rohit K. & Sen, Bodhisattva & Székely, Gábor J., 2016. "On a nonparametric notion of residual and its applications," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 208-213.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:349-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.