IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p331-340.html
   My bibliography  Save this article

Recursively Imputed Survival Trees

Author

Listed:
  • Ruoqing Zhu
  • Michael R. Kosorok

Abstract

We propose recursively imputed survival tree (RIST) regression for right-censored data. This new nonparametric regression procedure uses a novel recursive imputation approach combined with extremely randomized trees that allows significantly better use of censored data than previous tree-based methods, yielding improved model fit and reduced prediction error. The proposed method can also be viewed as a type of Monte Carlo EM algorithm, which generates extra diversity in the tree-based fitting process. Simulation studies and data analyses demonstrate the superior performance of RIST compared with previous methods.

Suggested Citation

  • Ruoqing Zhu & Michael R. Kosorok, 2012. "Recursively Imputed Survival Trees," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 331-340, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:331-340
    DOI: 10.1080/01621459.2011.637468
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.637468
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2011.637468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoqing Zhu & Donglin Zeng & Michael R. Kosorok, 2015. "Reinforcement Learning Trees," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1770-1784, December.
    2. Hoora Moradian & Denis Larocque & François Bellavance, 2017. "$$L_1$$ L 1 splitting rules in survival forests," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 671-691, October.
    3. Yingchao Zhong & Chang Wang & Lu Wang, 2021. "Survival Augmented Patient Preference Incorporated Reinforcement Learning to Evaluate Tailoring Variables for Personalized Healthcare," Stats, MDPI, vol. 4(4), pages 1-17, September.
    4. Yifei Sun & Sy Han Chiou & Mei‐Cheng Wang, 2020. "ROC‐guided survival trees and ensembles," Biometrics, The International Biometric Society, vol. 76(4), pages 1177-1189, December.
    5. Alexander Hanbo Li & Jelena Bradic, 2019. "Censored Quantile Regression Forests," Papers 1902.03327, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:331-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.