IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v52y2025i3p595-623.html
   My bibliography  Save this article

Fast maximum likelihood estimation for general hierarchical models

Author

Listed:
  • Johnny Hong
  • Sara Stoudt
  • Perry de Valpine

Abstract

Hierarchical statistical models are important in applied sciences because they capture complex relationships in data, especially when variables are related by space, time, sampling unit, or other shared features. Existing methods for maximum likelihood estimation that rely on Monte Carlo integration over latent variables, such as Monte Carlo Expectation Maximization (MCEM), suffer from drawbacks in efficiency and/or generality. We harness a connection between sampling-stepping iterations for such methods and stochastic gradient descent methods for non-hierarchical models: many noisier steps can do better than few cleaner steps. We call the resulting methods Hierarchical Model Stochastic Gradient Descent (HMSGD) and show that combining efficient, adaptive step-size algorithms with HMSGD yields efficiency gains. We introduce a one-dimensional sampling-based greedy line search for step-size determination. We implement these methods and conduct numerical experiments for a Gamma-Poisson mixture model, a generalized linear mixed models (GLMMs) with single and crossed random effects, and a multi-species ecological occupancy model with over 3000 latent variables. Our experiments show that the accelerated HMSGD methods provide faster convergence than commonly used methods and are robust to reasonable choices of MCMC sample size.

Suggested Citation

  • Johnny Hong & Sara Stoudt & Perry de Valpine, 2025. "Fast maximum likelihood estimation for general hierarchical models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 52(3), pages 595-623, February.
  • Handle: RePEc:taf:japsta:v:52:y:2025:i:3:p:595-623
    DOI: 10.1080/02664763.2024.2383284
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2024.2383284
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2024.2383284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:52:y:2025:i:3:p:595-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.