IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v51y2024i12p2436-2456.html
   My bibliography  Save this article

Interval-specific censoring set adjusted Kaplan–Meier estimator

Author

Listed:
  • Yaoshi Wu
  • John Kolassa

Abstract

We propose a non-parametric approach to reduce the overestimation of the Kaplan-Meier (KM) estimator when the event and censoring times are independent. We adjust the KM estimator based on the interval-specific censoring set, a collection of intervals where censored data are observed between two adjacent event times. The proposed interval-specific censoring set adjusted KM estimator reduces to the KM estimator if there are no censored observations or the sample size tends to infinity and the proposed estimator is consistent, as is the case for the KM estimator. We prove theoretically that the proposed estimator reduces the overestimation compared to the KM estimator and provide a mathematical formula to estimate the variance of the proposed estimator based on Greenwood's approach. We also provide a modified log-rank test based on the proposed estimator. We perform four simulation studies to compare the proposed estimator with the KM estimator when the failure rate is constant, decreasing, increasing, and based on the flexible hazard method. The bias reduction in median survival time and survival rate using the proposed estimator is considerably large, especially when the censoring rate is high. The standard deviations are comparable between the two estimators. We implement the proposed and KM estimator for the Nonalcoholic Fatty Liver Disease patients from a population study. The results show the proposed estimator substantially reduce the overestimation in the presence of high observed censoring rate.

Suggested Citation

  • Yaoshi Wu & John Kolassa, 2024. "Interval-specific censoring set adjusted Kaplan–Meier estimator," Journal of Applied Statistics, Taylor & Francis Journals, vol. 51(12), pages 2436-2456, September.
  • Handle: RePEc:taf:japsta:v:51:y:2024:i:12:p:2436-2456
    DOI: 10.1080/02664763.2023.2298795
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2023.2298795
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2023.2298795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:51:y:2024:i:12:p:2436-2456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.