IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v50y2023i4p889-908.html
   My bibliography  Save this article

The unit log–log distribution: a new unit distribution with alternative quantile regression modeling and educational measurements applications

Author

Listed:
  • Mustafa Ç. Korkmaz
  • Zehra Sedef Korkmaz

Abstract

In this paper, we propose a new distribution, named unit log–log distribution, defined on the bounded (0,1) interval. Basic distributional properties such as model shapes, stochastic ordering, quantile function, moments, and order statistics of the newly defined unit distribution are studied. The maximum likelihood estimation method has been pointed out to estimate its model parameters. The new quantile regression model based on the proposed distribution is introduced and it has been derived estimations of its model parameters also. The Monte Carlo simulation studies have been given to see the performance of the estimation method based on the new unit distribution and its regression modeling. Applications of the newly defined distribution and its quantile regression model to real data sets show that the proposed models have better modeling abilities than competitive models. The proposed unit quantile regression model has targeted to explain linear relation between educational measurements of both OECD (Organization for Economic Co-operation and Development) countries and some non-members of OECD countries, and their Better Life Index. The existence of the significant covariates has been seen on the real data applications for the unit median response.

Suggested Citation

  • Mustafa Ç. Korkmaz & Zehra Sedef Korkmaz, 2023. "The unit log–log distribution: a new unit distribution with alternative quantile regression modeling and educational measurements applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 50(4), pages 889-908, March.
  • Handle: RePEc:taf:japsta:v:50:y:2023:i:4:p:889-908
    DOI: 10.1080/02664763.2021.2001442
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2021.2001442
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2021.2001442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan S. Bakouch & Tassaddaq Hussain & Marina Tošić & Vladica S. Stojanović & Najla Qarmalah, 2023. "Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling," Mathematics, MDPI, vol. 11(19), pages 1-22, October.
    2. Helton Saulo & Roberto Vila & Giovanna V. Borges & Marcelo Bourguignon & Víctor Leiva & Carolina Marchant, 2023. "Modeling Income Data via New Parametric Quantile Regressions: Formulation, Computational Statistics, and Application," Mathematics, MDPI, vol. 11(2), pages 1-25, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:50:y:2023:i:4:p:889-908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.