IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v50y2023i3p456-476.html
   My bibliography  Save this article

Two-sample Behrens–Fisher problems for high-dimensional data: a normal reference scale-invariant test

Author

Listed:
  • Liang Zhang
  • Tianming Zhu
  • Jin-Ting Zhang

Abstract

For high-dimensional two-sample Behrens–Fisher problems, several non-scale-invariant and scale-invariant tests have been proposed. Most of them impose strong assumptions on the underlying group covariance matrices so that their test statistics are asymptotically normal. However, in practice, these assumptions may not be satisfied or hardly be checked so that these tests may not be able to maintain the nominal size well in practice. To overcome this difficulty, in this paper, a normal reference scale-invariant test is proposed and studied. It works well by neither imposing strong assumptions on the underlying group covariance matrices nor assuming their equality. It is shown that under some regularity conditions and the null hypothesis, the proposed test and a chi-square-type mixture have the same normal and non-normal limiting distributions. It is then justifiable to approximate the null distribution of the proposed test using that of the chi-square-type mixture. The distribution of the chi-square type mixture can be well approximated by the Welch–Satterthwaite chi-square-approximation with the approximation parameter consistently estimated from the data. The asymptotic power of the proposed test is established. Numerical results demonstrate that the proposed test has much better size control and power than several well-known non-scale-invariant and scale-invariant tests.

Suggested Citation

  • Liang Zhang & Tianming Zhu & Jin-Ting Zhang, 2023. "Two-sample Behrens–Fisher problems for high-dimensional data: a normal reference scale-invariant test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 50(3), pages 456-476, February.
  • Handle: RePEc:taf:japsta:v:50:y:2023:i:3:p:456-476
    DOI: 10.1080/02664763.2020.1834516
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2020.1834516
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2020.1834516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxiang Cao & Ziyang Cheng & Kai Xu & Daojiang He, 2024. "A scale-invariant test for linear hypothesis of means in high dimensions," Statistical Papers, Springer, vol. 65(6), pages 3477-3497, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:50:y:2023:i:3:p:456-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.