IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v50y2023i16p3272-3293.html
   My bibliography  Save this article

Three approaches to supervised learning for compositional data with pairwise logratios

Author

Listed:
  • Germà Coenders
  • Michael Greenacre

Abstract

Logratios between pairs of compositional parts (pairwise logratios) are the easiest to interpret in compositional data analysis, and include the well-known additive logratios as particular cases. When the number of parts is large (sometimes even larger than the number of cases), some form of logratio selection is needed. In this article, we present three alternative stepwise supervised learning methods to select the pairwise logratios that best explain a dependent variable in a generalized linear model, each geared for a specific problem. The first method features unrestricted search, where any pairwise logratio can be selected. This method has a complex interpretation if some pairs of parts in the logratios overlap, but it leads to the most accurate predictions. The second method restricts parts to occur only once, which makes the corresponding logratios intuitively interpretable. The third method uses additive logratios, so that K−1 selected logratios involve a K-part subcomposition. Our approach allows logratios or non-compositional covariates to be forced into the models based on theoretical knowledge, and various stopping criteria are available based on information measures or statistical significance with the Bonferroni correction. We present an application on a dataset from a study predicting Crohn's disease.

Suggested Citation

  • Germà Coenders & Michael Greenacre, 2023. "Three approaches to supervised learning for compositional data with pairwise logratios," Journal of Applied Statistics, Taylor & Francis Journals, vol. 50(16), pages 3272-3293, December.
  • Handle: RePEc:taf:japsta:v:50:y:2023:i:16:p:3272-3293
    DOI: 10.1080/02664763.2022.2108007
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2022.2108007
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2022.2108007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:50:y:2023:i:16:p:3272-3293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.