IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v49y2022i3p656-675.html
   My bibliography  Save this article

Survival analysis for the inverse Gaussian distribution with the Gibbs sampler

Author

Listed:
  • Kalanka. P. Jayalath
  • Raj S. Chhikara

Abstract

This paper describes a comprehensive survival analysis for the inverse Gaussian distribution employing Bayesian and Fiducial approaches. It focuses on making inferences on the inverse Gaussian (IG) parameters μ and λ and the average remaining time of censored units. A flexible Gibbs sampling approach applicable in the presence of censoring is discussed and illustrations with Type II, progressive Type II, and random rightly censored observations are included. The analyses are performed using both simulated IG data and empirical data examples. Further, the bootstrap comparisons are made between the Bayesian and Fiducial estimates. It is concluded that the shape parameter ( $\phi =\lambda /\mu $ϕ=λ/μ) of the inverse Gaussian distribution has the most impact on the two analyses, Bayesian vs. Fiducial, and so does the size of censoring in data to a lesser extent. Overall, both these approaches are effective in estimating IG parameters and the average remaining lifetime. The suggested Gibbs sampler allowed a great deal of flexibility in implementation for all types of censoring considered.

Suggested Citation

  • Kalanka. P. Jayalath & Raj S. Chhikara, 2022. "Survival analysis for the inverse Gaussian distribution with the Gibbs sampler," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(3), pages 656-675, February.
  • Handle: RePEc:taf:japsta:v:49:y:2022:i:3:p:656-675
    DOI: 10.1080/02664763.2020.1828314
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2020.1828314
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2020.1828314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tzong-Ru Tsai & Hua Xin & Ya-Yen Fan & Yuhlong Lio, 2022. "Bias-Corrected Maximum Likelihood Estimation and Bayesian Inference for the Process Performance Index Using Inverse Gaussian Distribution," Stats, MDPI, vol. 5(4), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:49:y:2022:i:3:p:656-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.