IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v49y2022i15p3804-3822.html
   My bibliography  Save this article

Statistical inference for a relaxation index of stochastic dominance under density ratio model

Author

Listed:
  • Weiwei Zhuang
  • Yadong Li
  • Guoxin Qiu

Abstract

Stochastic dominance is usually used to rank random variables by comparing their distributions, so it is widely applied in economics and finance. In actual applications, complete stochastic dominance is too demanding to meet, so relaxation indexes of stochastic dominance have attracted more attention. The π index, the biggest gap between two distributions, can be a measure of the degree of deviation from complete dominance. The traditional estimation method is to use the empirical distribution functions to estimate it. Considering the populations under comparison are generally of the same nature, we can link the populations through density ratio model under certain condition. Based on this model, we propose a new estimator and establish its statistical inference theory. Simulation results show that the proposed estimator substantially improves estimation efficiency and power of the tests and coverage probabilities satisfactorily match the confidence levels of the tests, which show the superiority of the proposed estimator. Finally we apply our method to a real example of the Chinese household incomes.

Suggested Citation

  • Weiwei Zhuang & Yadong Li & Guoxin Qiu, 2022. "Statistical inference for a relaxation index of stochastic dominance under density ratio model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(15), pages 3804-3822, November.
  • Handle: RePEc:taf:japsta:v:49:y:2022:i:15:p:3804-3822
    DOI: 10.1080/02664763.2021.1965966
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2021.1965966
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2021.1965966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batyr Orazbayev & Yerbol Ospanov & Valentina Makhatova & Lazzat Salybek & Zhanat Abdugulova & Zhumazhan Kulmagambetova & Salamat Suleimenova & Kulman Orazbayeva, 2023. "Methods of Fuzzy Multi-Criteria Decision Making for Controlling the Operating Modes of the Stabilization Column of the Primary Oil-Refining Unit," Mathematics, MDPI, vol. 11(13), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:49:y:2022:i:15:p:3804-3822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.