IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v48y2021i2p234-246.html
   My bibliography  Save this article

Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method

Author

Listed:
  • Yunlu Jiang
  • Yan Wang
  • Jiantao Zhang
  • Baojian Xie
  • Jibiao Liao
  • Wenhui Liao

Abstract

This paper studies the outlier detection and robust variable selection problem in the linear regression model. The penalized weighted least absolute deviation (PWLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to simultaneously achieve outlier detection, and robust variable selection. An iterative algorithm is proposed to solve the proposed optimization problem. Monte Carlo studies are evaluated the finite-sample performance of the proposed methods. The results indicate that the finite sample performance of the proposed methods performs better than that of the existing methods when there are leverage points or outliers in the response variable or explanatory variables. Finally, we apply the proposed methodology to analyze two real datasets.

Suggested Citation

  • Yunlu Jiang & Yan Wang & Jiantao Zhang & Baojian Xie & Jibiao Liao & Wenhui Liao, 2021. "Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(2), pages 234-246, January.
  • Handle: RePEc:taf:japsta:v:48:y:2021:i:2:p:234-246
    DOI: 10.1080/02664763.2020.1722079
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2020.1722079
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2020.1722079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyasiani, Elyas & Movaghari, Hadi, 2022. "Determinants of corporate cash holdings: An application of a robust variable selection technique," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 967-993.
    2. Shengfei Tang & Yanmei Shi & Qi Zhang, 2023. "Bias-Corrected Inference of High-Dimensional Generalized Linear Models," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    3. Yafen Ye & Renyong Chi & Yuan-Hai Shao & Chun-Na Li & Xiangyu Hua, 2022. "Indicator Selection of Index Construction by Adaptive Lasso with a Generic $$\varepsilon $$ ε -Insensitive Loss," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 971-990, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:48:y:2021:i:2:p:234-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.