Author
Listed:
- Peter W. Marcy
- Scott A. Vander Wiel
- Curtis B. Storlie
- Veronica Livescu
- Curt A. Bronkhorst
Abstract
The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this paper, we define an intricate statistical model for the spatial field of vonMises stress which uses the given grain geometry in a fundamental way. Our model relates the three-dimensional field to integrals of latent stochastic processes defined on the vertices of the one- and two-dimensional grain boundaries. An intuitive neighborhood structure of the said boundary nodes suggested the use of a latent Gaussian Markov random field (GMRF). However, despite the potential for computational gains afforded by GMRFs, the integral nature of our model and the sheer number of data points pose substantial challenges for a full Bayesian analysis. To overcome these problems and encourage efficient exploration of the posterior distribution, a number of techniques are now combined: parallel computing, sparse matrix methods, and a modification of a block update strategy within the sampling routine. In addition, we use an auxiliary variables approach to accommodate the presence of outliers in the data.
Suggested Citation
Peter W. Marcy & Scott A. Vander Wiel & Curtis B. Storlie & Veronica Livescu & Curt A. Bronkhorst, 2020.
"Modeling material stress using integrated Gaussian Markov random fields,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(9), pages 1616-1636, June.
Handle:
RePEc:taf:japsta:v:47:y:2020:i:9:p:1616-1636
DOI: 10.1080/02664763.2019.1686131
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:47:y:2020:i:9:p:1616-1636. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.