IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v47y2020i6p1084-1108.html
   My bibliography  Save this article

A bivariate inverse Weibull distribution and its application in complementary risks model

Author

Listed:
  • Shuvashree Mondal
  • Debasis Kundu

Abstract

In reliability and survival analysis the inverse Weibull distribution has been used quite extensively as a heavy tailed distribution with a non-monotone hazard function. Recently a bivariate inverse Weibull (BIW) distribution has been introduced in the literature, where the marginals have inverse Weibull distributions and it has a singular component. Due to this reason this model cannot be used when there are no ties in the data. In this paper we have introduced an absolutely continuous bivariate inverse Weibull (ACBIW) distribution omitting the singular component from the BIW distribution. A natural application of this model can be seen in the analysis of dependent complementary risks data. We discuss different properties of this model and also address the inferential issues both from the classical and Bayesian approaches. In the classical approach, the maximum likelihood estimators cannot be obtained explicitly and we propose to use the expectation maximization algorithm based on the missing value principle. In the Bayesian analysis, we use a very flexible prior on the unknown model parameters and obtain the Bayes estimates and the associated credible intervals using importance sampling technique. Simulation experiments are performed to see the effectiveness of the proposed methods and two data sets have been analyzed to see how the proposed methods and the model work in practice.

Suggested Citation

  • Shuvashree Mondal & Debasis Kundu, 2020. "A bivariate inverse Weibull distribution and its application in complementary risks model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 1084-1108, April.
  • Handle: RePEc:taf:japsta:v:47:y:2020:i:6:p:1084-1108
    DOI: 10.1080/02664763.2019.1669542
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2019.1669542
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2019.1669542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isidro Jesús González-Hernández & Rafael Granillo-Macías & Carlos Rondero-Guerrero & Isaías Simón-Marmolejo, 2021. "Marshall-Olkin distributions: a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9005-9029, November.
    2. Na Young Yoo & Ji Hwan Cha, 2024. "General classes of bivariate distributions for modeling data with common observations," Statistical Papers, Springer, vol. 65(8), pages 5219-5238, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:47:y:2020:i:6:p:1084-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.