Author
Listed:
- Artur J. Lemonte
- Germán Moreno-Arenas
- Fredy Castellares
Abstract
By starting from the one-parameter Bell distribution proposed recently in the statistic literature, we introduce the zero-inflated Bell family of distributions. Additionally, on the basis of the proposed zero-inflated distribution, a novel zero-inflated regression model is proposed, which is quite simple and may be an interesting alternative to usual zero-inflated regression models for count data. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the zero-inflated Bell regression parameters. Monte Carlo simulations indicate that the maximum likelihood method is quite effective to estimate the zero-inflated Bell regression parameters. We also propose the Pearson residuals for the new zero-inflated regression model to assess departures from model assumptions. Additionally, the global and local influence methods are discussed. In particular, the normal curvature for studying local influence is derived under case weighting perturbation scheme. Finally, an application to the count of infected blood cells is considered to illustrate the usefulness of the zero-inflated Bell regression model in practice. The results suggest that the new zero-inflated Bell regression is more appropriate to model these count data than other familiar zero-inflated (or not) regression models commonly used in practice.
Suggested Citation
Artur J. Lemonte & Germán Moreno-Arenas & Fredy Castellares, 2020.
"Zero-inflated Bell regression models for count data,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(2), pages 265-286, January.
Handle:
RePEc:taf:japsta:v:47:y:2020:i:2:p:265-286
DOI: 10.1080/02664763.2019.1636940
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:47:y:2020:i:2:p:265-286. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.