Author
Listed:
- Mario Giacomazzo
- Yiannis Kamarianakis
Abstract
Traffic management authorities in metropolitan areas use real-time systems that analyze high-frequency measurements from fixed sensors, to perform short-term forecasting and incident detection for various locations of a road network. Published research over the last 20 years focused primarily on modeling and forecasting of traffic volumes and speeds. Traffic occupancy approximates vehicular density through the percentage of time a sensor detects a vehicle within a pre-specified time interval. It exhibits weekly periodic patterns and heteroskedasticity and has been used as a metric for characterizing traffic regimes (e.g. free flow, congestion). This article presents a Bayesian three-step model building procedure for parsimonious estimation of Threshold-Autoregressive (TAR) models, designed for location- day- and horizon-specific forecasting of traffic occupancy. In the first step, multiple regime TAR models reformulated as high-dimensional linear regressions are estimated using Bayesian horseshoe priors. Next, significant regimes are identified through a forward selection algorithm based on Kullback-Leibler (KL) distances between the posterior predictive distribution of the full reference model and TAR models with fewer regimes. Given the regimes, the forward selection algorithm can be implemented again to select significant autoregressive terms. In addition to forecasting, the proposed specification and model-building scheme, may assist in determining location-specific congestion thresholds and associations between traffic dynamics observed in different regions of a network. Empirical results applied to data from a traffic forecasting competition, illustrate the efficacy of the proposed procedures in obtaining interpretable models and in producing satisfactory point and density forecasts at multiple horizons.
Suggested Citation
Mario Giacomazzo & Yiannis Kamarianakis, 2020.
"Bayesian estimation of subset threshold autoregressions: short-term forecasting of traffic occupancy,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(13-15), pages 2658-2689, November.
Handle:
RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2658-2689
DOI: 10.1080/02664763.2020.1801606
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:47:y:2020:i:13-15:p:2658-2689. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.