IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i5p926-945.html
   My bibliography  Save this article

Robust logistic regression of family data in the presence of missing genotypes

Author

Listed:
  • Yanping Qiu
  • Baosheng Liang

Abstract

Large cohort studies are commonly launched to study the risk effect of genetic variants or other risk factors on a chronic disorder. In these studies, family data are often collected to provide additional information for the purpose of improving the inference results. Statistical analysis of the family data can be very challenging due to the missing observations of genotypes, incomplete records of disease occurrences in family members, and the complicated dependence attributed to the shared genetic background and environmental factors. In this article, we investigate a class of logistic models with family-shared random effects to tackle these challenges, and develop a robust regression method based on the conditional logistic technique for statistical inference. An expectation–maximization (EM) algorithm with fast computation speed is developed to handle the missing genotypes. The proposed estimators are shown to be consistent and asymptotically normal. Additionally, a score test based on the proposed method is derived to test the genetic effect. Extensive simulation studies demonstrate that the proposed method performs well in finite samples in terms of estimate accuracy, robustness and computational speed. The proposed procedure is applied to an Alzheimer's disease study.

Suggested Citation

  • Yanping Qiu & Baosheng Liang, 2019. "Robust logistic regression of family data in the presence of missing genotypes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(5), pages 926-945, April.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:5:p:926-945
    DOI: 10.1080/02664763.2018.1526890
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2018.1526890
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2018.1526890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunhua Chen & Jianwei Ren & Lijun Tang & Haohua Liu, 2020. "Additive integer-valued data envelopment analysis with missing data: A multi-criteria evaluation approach," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:5:p:926-945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.