IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i13p2418-2433.html
   My bibliography  Save this article

Estimation of value-at-risk using single index quantile regression

Author

Listed:
  • Eliana Christou
  • Michael Grabchak

Abstract

Value-at-Risk (VaR) is one of the best known and most heavily used measures of financial risk. In this paper, we introduce a non-iterative semiparametric model for VaR estimation called the single index quantile regression time series (SIQRTS) model. To test its performance, we give an application to four major US market indices: the S&P 500 Index, the Russell 2000 Index, the Dow Jones Industrial Average, and the NASDAQ Composite Index. Our results suggest that this method has a good finite sample performance and often outperforms a number of commonly used methods.

Suggested Citation

  • Eliana Christou & Michael Grabchak, 2019. "Estimation of value-at-risk using single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(13), pages 2418-2433, October.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:13:p:2418-2433
    DOI: 10.1080/02664763.2019.1597028
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2019.1597028
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2019.1597028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    2. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
    3. Eliana Christou & Michael Grabchak, 2022. "Estimation of Expected Shortfall Using Quantile Regression: A Comparison Study," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 725-753, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:13:p:2418-2433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.