Author
Listed:
- Yonggang Lu
- Peter Westfall
Abstract
In statistical practice, inferences on standardized regression coefficients are often required, but complicated by the fact that they are nonlinear functions of the parameters, and thus standard textbook results are simply wrong. Within the frequentist domain, asymptotic delta methods can be used to construct confidence intervals of the standardized coefficients with proper coverage probabilities. Alternatively, Bayesian methods solve similar and other inferential problems by simulating data from the posterior distribution of the coefficients. In this paper, we present Bayesian procedures that provide comprehensive solutions for inferences on the standardized coefficients. Simple computing algorithms are developed to generate posterior samples with no autocorrelation and based on both noninformative improper and informative proper prior distributions. Simulation studies show that Bayesian credible intervals constructed by our approaches have comparable and even better statistical properties than their frequentist counterparts, particularly in the presence of collinearity. In addition, our approaches solve some meaningful inferential problems that are difficult if not impossible from the frequentist standpoint, including identifying joint rankings of multiple standardized coefficients and making optimal decisions concerning their sizes and comparisons. We illustrate applications of our approaches through examples and make sample R functions available for implementing our proposed methods.
Suggested Citation
Yonggang Lu & Peter Westfall, 2019.
"Simple and flexible Bayesian inferences for standardized regression coefficients,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2254-2288, September.
Handle:
RePEc:taf:japsta:v:46:y:2019:i:12:p:2254-2288
DOI: 10.1080/02664763.2019.1584609
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:12:p:2254-2288. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.