IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i9p1714-1733.html
   My bibliography  Save this article

Untangle the structural and random zeros in statistical modelings

Author

Listed:
  • W. Tang
  • H. He
  • W.J. Wang
  • D.G. Chen

Abstract

Count data with structural zeros are common in public health applications. There are considerable researches focusing on zero-inflated models such as zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) models for such zero-inflated count data when used as response variable. However, when such variables are used as predictors, the difference between structural and random zeros is often ignored and may result in biased estimates. One remedy is to include an indicator of the structural zero in the model as a predictor if observed. However, structural zeros are often not observed in practice, in which case no statistical method is available to address the bias issue. This paper is aimed to fill this methodological gap by developing parametric methods to model zero-inflated count data when used as predictors based on the maximum likelihood approach. The response variable can be any type of data including continuous, binary, count or even zero-inflated count responses. Simulation studies are performed to assess the numerical performance of this new approach when sample size is small to moderate. A real data example is also used to demonstrate the application of this method.

Suggested Citation

  • W. Tang & H. He & W.J. Wang & D.G. Chen, 2018. "Untangle the structural and random zeros in statistical modelings," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1714-1733, July.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:9:p:1714-1733
    DOI: 10.1080/02664763.2017.1391180
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1391180
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1391180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana Rodrigues-Motta & Johannes Forkman, 2022. "Bayesian Analysis of Nonnegative Data Using Dependency-Extended Two-Part Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 201-221, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:9:p:1714-1733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.