IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i7p1260-1276.html
   My bibliography  Save this article

Bayesian regression model for recurrent event data with event-varying covariate effects and event effect

Author

Listed:
  • Li-An Lin
  • Sheng Luo
  • Barry R. Davis

Abstract

In the course of hypertension, cardiovascular disease events (e.g. stroke, heart failure) occur frequently and recurrently. The scientific interest in such study may lie in the estimation of treatment effect while accounting for the correlation among event times. The correlation among recurrent event times comes from two sources: subject-specific heterogeneity (e.g. varied lifestyles, genetic variations, and other unmeasurable effects) and event dependence (i.e. event incidences may change the risk of future recurrent events). Moreover, event incidences may change the disease progression so that there may exist event-varying covariate effects (the covariate effects may change after each event) and event effect (the effect of prior events on the future events). In this article, we propose a Bayesian regression model that not only accommodates correlation among recurrent events from both sources, but also explicitly characterizes the event-varying covariate effects and event effect. This model is especially useful in quantifying how the incidences of events change the effects of covariates and risk of future events. We compare the proposed model with several commonly used recurrent event models and apply our model to the motivating lipid-lowering trial (LLT) component of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) (ALLHAT-LLT).

Suggested Citation

  • Li-An Lin & Sheng Luo & Barry R. Davis, 2018. "Bayesian regression model for recurrent event data with event-varying covariate effects and event effect," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(7), pages 1260-1276, May.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:7:p:1260-1276
    DOI: 10.1080/02664763.2017.1367368
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1367368
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1367368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2020. "Virtual age models with time-dependent covariates: A framework for simulation, parametric inference and quality of estimation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:7:p:1260-1276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.