IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i5p932-955.html
   My bibliography  Save this article

On a tobit–Birnbaum–Saunders model with an application to medical data

Author

Listed:
  • Mário F. Desousa
  • Helton Saulo
  • Víctor Leiva
  • Paulo Scalco

Abstract

The tobit model allows a censored response variable to be described by covariates. Its applications cover different areas such as economics, engineering, environment and medicine. A strong assumption of the standard tobit model is that its errors follow a normal distribution. However, not all applications are well modeled by this distribution. Some efforts have relaxed the normality assumption by considering more flexible distributions. Nevertheless, the presence of asymmetry could not be well described by these flexible distributions. A real-world data application of measles vaccine in Haiti is explored, which confirms this asymmetry. We propose a tobit model with errors following a Birnbaum–Saunders (BS) distribution, which is asymmetrical and has shown to be a good alternative for describing medical data. Inference based on the maximum likelihood method and a type of residual are derived for the tobit–BS model. We perform global and local influence diagnostics to assess the sensitivity of the maximum likelihood estimators to atypical cases. A Monte Carlo simulation study is carried out to empirically evaluate the performance of these estimators. We conduct a data analysis for the mentioned application of measles vaccine based on the proposed model with the help of the R software. The results show the good performance of the tobit–BS model.

Suggested Citation

  • Mário F. Desousa & Helton Saulo & Víctor Leiva & Paulo Scalco, 2018. "On a tobit–Birnbaum–Saunders model with an application to medical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 932-955, April.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:932-955
    DOI: 10.1080/02664763.2017.1322559
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1322559
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1322559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:932-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.