IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i5p845-867.html
   My bibliography  Save this article

Critical appraisal of jointness concepts in Bayesian model averaging: evidence from life sciences, sociology, and other scientific fields

Author

Listed:
  • Georg Man

Abstract

Jointness is a Bayesian approach to capturing dependence among regressors in multivariate data. It addresses the general issue of whether explanatory factors for a given empirical phenomenon are complements or substitutes. I ask a number of questions about existing jointness concepts: Are the patterns revealed stable across datasets? Are results robust to prior choice and do data characteristics affect results? And importantly: What do the answers imply from a practical vista? The present study takes an applied, interdisciplinary and comparative perspective, validating jointness concepts on datasets across scientific fields with focus on life sciences (Parkinson's disease) and sociology. Simulations complement the study of real-world data. My findings suggest that results depend on which jointness concept is used: Some concepts deliver jointness patterns remarkably uniform across datasets, while all concepts are fairly robust to the choice of prior structure. This can be interpreted as critique of jointness from a practical perspective, given that the patterns revealed are at times very different and no concept emerges as overall advantageous. The composite indicators approach to combining information across jointness concepts is also explored, suggesting an avenue to facilitate the application of the concepts in future research.

Suggested Citation

  • Georg Man, 2018. "Critical appraisal of jointness concepts in Bayesian model averaging: evidence from life sciences, sociology, and other scientific fields," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 845-867, April.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:845-867
    DOI: 10.1080/02664763.2017.1318839
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1318839
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1318839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    2. Bettina Grün & Paul Hofmarcher, 2021. "Identifying groups of determinants in Bayesian model averaging using Dirichlet process clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1018-1045, September.
    3. Shahram Amini & Christopher F. Parmeter, 2020. "A Review of the ‘BMS’ Package for R with Focus on Jointness," Econometrics, MDPI, vol. 8(1), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:845-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.