IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i3p384-408.html
   My bibliography  Save this article

Heteroscedastic log-exponentiated Weibull regression model

Author

Listed:
  • Edwin M. M. Ortega
  • Artur J. Lemonte
  • Gauss M. Cordeiro
  • Vicente G. Cancho
  • Fábio L. Mialhe

Abstract

We introduce a new class of heteroscedastic log-exponentiated Weibull (LEW) regression models. The class of regression models can be applied to censored data and be used more effectively in survival analysis. Maximum likelihood estimation of the model parameters with censored data as well as influence diagnostics for the new regression model is investigated. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the heteroscedastic LEW regression model. The normal curvatures for studying local influence are derived under various perturbation schemes. An empirical application to a real data set is provided to illustrate the usefulness of the new class of heteroscedastic regression models.

Suggested Citation

  • Edwin M. M. Ortega & Artur J. Lemonte & Gauss M. Cordeiro & Vicente G. Cancho & Fábio L. Mialhe, 2018. "Heteroscedastic log-exponentiated Weibull regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 384-408, February.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:384-408
    DOI: 10.1080/02664763.2016.1277192
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1277192
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1277192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    2. Matos, Larissa A. & Lachos, Victor H. & Balakrishnan, N. & Labra, Filidor V., 2013. "Influence diagnostics in linear and nonlinear mixed-effects models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 450-464.
    3. Artur J. Lemonte & Alexandre G. Patriota, 2011. "Influence diagnostics in Birnbaum--Saunders nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 871-884, February.
    4. Li, Ai-Ping & Chen, Zhao-Xia & Xie, Feng-Chang, 2012. "Diagnostic analysis for heterogeneous log-Birnbaum–Saunders regression models," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1690-1698.
    5. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirche, Martin & Greenacre, Luke & Nenycz-Thiel, Magda & Loose, Simone & Lockshin, Larry, 2021. "SKU performance and distribution: A large-scale analysis of the role of product characteristics with store scanner data," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.
    2. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    4. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2014. "Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1383-1392, June.
    5. Xu, Dengke & Zhang, Zhongzhan, 2013. "A semiparametric Bayesian approach to joint mean and variance models," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1624-1631.
    6. Mário Fernando De Sousa & Helton Saulo & Víctor Leiva & Paulo Scalco, 2018. "On Some Properties Of A New Asymmetry-Based Tobit Model," Anais do XLIV Encontro Nacional de Economia [Proceedings of the 44th Brazilian Economics Meeting] 129, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    7. Vanegas, Luis Hernando & Rondón, Luz Marina & Cysneiros, Francisco José A., 2012. "Diagnostic procedures in Birnbaum–Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1662-1680.
    8. Li, Ai-Ping & Chen, Zhao-Xia & Xie, Feng-Chang, 2012. "Diagnostic analysis for heterogeneous log-Birnbaum–Saunders regression models," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1690-1698.
    9. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.
    10. Lachos, Víctor H. & Moreno, Edgar J. López & Chen, Kun & Cabral, Celso Rômulo Barbosa, 2017. "Finite mixture modeling of censored data using the multivariate Student-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 151-167.
    11. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:3:p:384-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.