Author
Listed:
- Gregory J. Matthews
- Juliet K. Brophy
- Maxwell Luetkemeier
- Hongie Gu
- George K. Thiruvathukal
Abstract
This study explores the performance of machine learning algorithms on the classification of fossil teeth in the Family Bovidae. Isolated bovid teeth are typically the most common fossils found in southern Africa and they often constitute the basis for paleoenvironmental reconstructions. Taxonomic identification of fossil bovid teeth, however, is often imprecise and subjective. Using modern teeth with known taxons, machine learning algorithms can be trained to classify fossils. Previous work by Brophy et al. [Quantitative morphological analysis of bovid teeth and implications for paleoenvironmental reconstruction of plovers lake, Gauteng Province, South Africa, J. Archaeol. Sci. 41 (2014), pp. 376–388] uses elliptical Fourier analysis of the form (size and shape) of the outline of the occlusal surface of each tooth as features in a linear discriminant analysis (LDA) framework. This manuscript expands on that previous work by exploring how different machine learning approaches classify the teeth and testing which technique is best for classification. In addition to LDA, four other machine learning techniques were considered (neural networks, nuclear penalized multinomial regression,random forests, and support vector machines) with support vector machines and random forests performing the best in terms of log loss and classification rate.
Suggested Citation
Gregory J. Matthews & Juliet K. Brophy & Maxwell Luetkemeier & Hongie Gu & George K. Thiruvathukal, 2018.
"A comparison of machine learning techniques for taxonomic classification of teeth from the Family Bovidae,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(15), pages 2773-2787, November.
Handle:
RePEc:taf:japsta:v:45:y:2018:i:15:p:2773-2787
DOI: 10.1080/02664763.2018.1441381
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:15:p:2773-2787. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.